pROC 1.17.0.1
pROC version 1.17.0.1 is available on CRAN now. Besides several bug fixes and small changes, it introduces more values in input
of coords
.
Here is an example:
library(pROC) data(aSAH) rocobj <- roc(aSAH$outcome, aSAH$s100b) coords(rocobj, x = seq(0, 1, .1), input="recall", ret="precision") # precision # 1 NaN # 2 1.0000000 # 3 1.0000000 # 4 0.8601399 # 5 0.6721311 # 6 0.6307692 # 7 0.6373057 # 8 0.4803347 # 9 0.4517906 # 10 0.3997833 # 11 0.3628319
Getting the update
The update his available on CRAN now. You can update your installation by simply typing:
install.packages("pROC")
Here is the full changelog:
1.17.0.1 (2020-01-07):
- Fix CRAN incoming checks as requested by CRAN.
1.17.0 (2020-12-29)
- Accept more values in
input
ofcoords
(issue #67). - Accept
kappa
for thepower.roc.test
of two ROC curves (issue #82). - The
input
argument tocoords
forsmooth.roc
curves no longer has a default. - The
x
argument tocoords
forsmooth.roc
can now be set toall
(also the default). - Fix bootstrap
roc.test
andcov
withsmooth.roc
curves. - The
ggroc
function can now plotsmooth.roc
curves (issue #86). - Remove warnings with
warnPartialMatchDollar
option (issue #87). - Make tests depending on vdiffr conditional (issue #88).
Xavier Robin
Published Wednesday, January 13, 2021 16:19 CET
Permalink: /blog/2021/01/13/proc-1.17.0.1
Tags:
pROC
Comments: 2
Comments
By Jose Juan Pereyra Rodriguez on Friday, July 23, 2021 13:04 CEST
Hi! I have installed the pROC package a month ago with the following code without problems:
#load and call the necessary package.
install.packages ("pROC")
library ("pROC")
#import the excel.
library (readxl)
dfcor <- read_excel ("C: /Users/pe3re/Downloads/Curvas-COR-master/Curvas-COR-master/FCM.xlsx", col_types = c ("numeric", "numeric"))
roc <-roc (dfcor $ true, dfcor $ pred)
plot (roc)
auc (roc)
#we draw the curve beautiful.
#insert AUC and IC
rocobj <- plot.roc (dfcor $ true, dfcor $ pred, main = "Confidence intervals", percent = TRUE, ci = TRUE, print.auc = TRUE)
#we create object to plot the default CI at 95% CI. Boots Default: 2000.
ciobj <- ci.se (rocobj, specificities = seq (0, 100, 5))
#insert the IC
plot (ciobj, type = "shape", col = "# 1c61b6AA") # plot as a blue shape
Today I have updated to the new version and it has given me problems. I have followed the code on the page and I get the same error again when using the confidence intervals:
roc1 <- roc (true ~ pred, dfcor, percent = TRUE,
ci = TRUE, boot.n = 100, ci.alpha = 0.9, stratified = FALSE,
plot = TRUE, auc.polygon = TRUE, max.auc.polygon = TRUE, grid = TRUE,
print.auc = TRUE, show.thres = TRUE)
Error in delongPlacementsCpp (roc):
package 'Rcpp_precious_remove' does not offer function 'Rcpp'
By Xavier on Monday, December 27, 2021 10:48 CET
An answer was given on the GitHub issue tracker (#99).